You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
30 December 2003Wafer-level vacuum packaging technology based on selective electroplating
A novel concept for low-cost, wafer-level packaging of MEMS is proposed and applied to vacuum packaging of INO’s 160x120 pixel uncooled bolometric focal plane arrays, FPAs, based on vanadium oxide thermistor material. A wafer-scale metallic tray composed of several tens of micropackages is electroplated by using the thick resist SU-8 as a micromold. FPA dies and infrared windows are then soldered to the main tray by flip-chip bonding. Contrary to the conventional wafer to wafer bonding approach, assembly and vacuum sealing steps are dissociated. For this purpose, each micropackage is equipped with a pump-out hole for outgassing under vacuum and at elevated temperature prior to vacuum sealing. The process flow for fabrication of micropackages is described. The influence of DC and pulse plating conditions on the stress and properties of deposited nickel packages was investigated. Results on the selective electroplating of indium solder on antireflection-coated IR window wafers and the formation of a solderable layer around the chip are presented.
The alert did not successfully save. Please try again later.
Patrice A. Topart, Sebastien Leclair, Christine Alain, Hubert Jerominek, "Wafer-level vacuum packaging technology based on selective electroplating," Proc. SPIE 5342, Micromachining and Microfabrication Process Technology IX, (30 December 2003); https://doi.org/10.1117/12.525802