You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
10 June 2004Optical I/O technology for digital VLSI
We describe the development of a high-speed, 12-channel (8-data, 2-clock and 2-alignment channels), parallel optical link with a unique packaging concept. The package is used to demonstrate the viability of chip-to-chip optical I/O in very large scale integration (VLSI) circuits. However, for implementation of optical systems in high performance computing applications, the cost of components and packaging has to come down significantly from the traditional optical communication distances. In the current work we attempted to realize such a system by using power efficient optical and electronic components together with a potentially low cost packaging solution compatible with the electronics industry. Vertical Cavity Surface Emitting Lasers (VCSEL), positive-intrinsic-negative (PIN) photodetectors, polymer waveguide arrays as well as CMOS transceiver chip were heterogeneously integrated on a standard microprocessor flip-chip pin grid array (FCPGA) substrate. The CMOS transceiver chip from 0.18μm processing technology contains VCSEL drivers, transimpedance and limiting amplifiers and on-chip self-testing circuits. A self-test circuit in such high-speed systems will be highly beneficial to reduce the testing cost in real products. For fully assembled packages we measured a 3 Gb/s optical eye for the transmitter (24Gb/s aggregate data rate) and a transmission over the complete link was achieved at 1 Gb/s (8Gb/s aggregate data rate).
The alert did not successfully save. Please try again later.
Edris M. Mohammed, Thomas P. Thomas, Daoqiang Lu, Henning Braunisch, Steven Towle, Brandon C. Barnett, Ian A. Young, Gilroy Vandentop, "Optical I/O technology for digital VLSI," Proc. SPIE 5358, Photonics Packaging and Integration IV, (10 June 2004); https://doi.org/10.1117/12.530160