You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
14 June 2004Carrier and spin dynamics in charged quantum dots
Carrier and spin dynamics are measured in meutral, positively and negatively charged quantum dots using polarization-sensitive time-resolved photoluminescence. Carrier capture rates are observed to be strongly enhanced in charged quantum dots, suggesting that electron-hole scattering dominates this process. For positive quantum dots, the enhanced spin-polarized electron capture rate eliminates loss of electron spin information in the GaAs barriers prior to capture, resulting in strong circularly-polarized emission. Comparison of spin relaxation times in positively charged and neutral quantum dots reveals a negligible influence of the large built-in hole population, in contrast to measurements in higher-dimensional p-type semiconductors. The long spin life-time, short capture time, and high radiative efficiency of the positively charged quantum dots indicates that these structures are superior to both quantum wells and neutral quantum dots for spin detection using a spin light-emitting diode.
The alert did not successfully save. Please try again later.
Kimberley C. Hall, Kenan Gundogdu, Thomas F. Boggess, Oleg B. Shchekin, Dennis G. Deppe, "Carrier and spin dynamics in charged quantum dots," Proc. SPIE 5361, Quantum Dots, Nanoparticles, and Nanoclusters, (14 June 2004); https://doi.org/10.1117/12.531620