You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
Commercial Raman confocal microscopy can acquire images with a resolution down to 200 nm. Much effort has recently been devoted to improve upon this resolution and obtain chemical characterization of ultimately a single organic molecule. As an effort in this direction, we have developed an experimental configuration by combining the analytical power of Raman spectroscopy with the nanometer resolution of atomic force microscopy (AFM). Here, an AFM silicon nitride probe, coated with a 40 nm silver layer, was used to significantly enhance the Raman signal by laser excitation of surface plasmons in the tip coating. Experimental results indicate a local surface enhanced Raman scattering (SERS) increase of 105. Lateral scanning of the sample and collecting the SERS signal allows for a 2D image of the chemical identity of the probed sample simultaneous with its topography as measured by the AFM. Also, the ratio of Stokes to anti-Stokes can be used to obtain an instantaneous and absolute map of the local temperature across the sample.
The alert did not successfully save. Please try again later.
Yanming Zhao, Brendan P. McCarthy, Konstantin M. Yamnitskiy, Dror Sarid, "Emerging applications of nano Raman," Proc. SPIE 5363, Emerging Optoelectronic Applications, (25 June 2004); https://doi.org/10.1117/12.534155