You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
5 May 2004Tools for augmented-reality-based liver resection planning
Surgical resection has evolved to an accepted and widely-used method for the treatment of liver tumors. In order
to elaborate an optimal resection strategy, computer-aided planning tools are required. However, measurements
based on 2D cross sectional images are difficult to perform. Moreover, resection planning with current desktopbased
systems using 3D visualization is also a tedious task because of limited 3D interaction. For facilitating the
planning process, different tools are presented allowing easy user interaction in an Augmented Reality environment.
Methods for quantitative analysis like volume calculation and distance measurements are discussed with
focus on the user interaction aspect. In addition, a tool for automatically generating anatomical resection proposals
based on knowledge about tumor locations and the portal vein tree is described. The presented methods
are part of an evolving liver surgery planning system which is currently evaluated by physicians.
The alert did not successfully save. Please try again later.
Bernhard Reitinger, Alexander Bornik, Reinhard Beichel, Georg Werkgartner, Erich Sorantin, "Tools for augmented-reality-based liver resection planning," Proc. SPIE 5367, Medical Imaging 2004: Visualization, Image-Guided Procedures, and Display, (5 May 2004); https://doi.org/10.1117/12.535545