You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
6 May 2004Measurements of an optimized beam for x-ray computed mammotomography
Simulation results from previous studies indicate that a quasi-monochromatic x-ray beam can be produced using a newly developed beam filtration technique. This technique utilizes heavy filtration with novel high Z filter materials having k-edges just above those of CsI, producing a near monochromatic beam with mean energy optimized for detection. The value of a near monochromatic x-ray source for a fully 3D tomography application is the expected improved ability to separate tissues with very small differences in attenuation coefficients for a range of uncompressed breast sizes while maintaining dose levels at or below existing dual view mammography. In this study, we experimentally investigate a set of filter materials (Al, Cu, Ag, Ce, W, and Pb), filter thicknesses (10th, 100th, and 200th VL), and tube potentials (40-80 kVp) using a newly constructed test apparatus. Initial experimental results corroborate simulations and indicate that this approach can improve image quality (SNR) at constant dose. Al, Cu, W, and Pb provide optimal exposure efficiency results at 60 kVp and above. Decreasing relative improvements are observed above 100th VL filter thickness at 78 cm SID. Results are obtained without significant tube heating (except at 40 kVp). In addition, simulations indicate significant reductions in beam hardening. This optimized beam will be incorporated into a novel cone-beam x-ray computed mammotomography sub-system together with an emission tomograph in a dual modality CT/SPECT application specific emission and transmission tomography system for fully 3D uncompressed breast imaging.
The alert did not successfully save. Please try again later.
Randolph L. McKinley, Ehsan Samei, Caryl N. Brzymialkiewicz, Martin P. Tornai, Carey E. Floyd Jr., "Measurements of an optimized beam for x-ray computed mammotomography," Proc. SPIE 5368, Medical Imaging 2004: Physics of Medical Imaging, (6 May 2004); https://doi.org/10.1117/12.536033