Translator Disclaimer
6 May 2004 Optimizing abdominal CT dose and image quality with respect to x-ray tube voltage
Author Affiliations +
The objective of this study was to identify the x-ray tube voltage that results in optimum performance for abdominal CT imaging for a range of imaging tasks and patient sizes. Theoretical calculations were performed of the contrast to noise ratio (CNR) for disk shaped lesions of muscle, fat, bone and iodine embedded in a uniform water background. Lesion contrast was the mean Hounsfield Unit value at the effective photon energy, and image noise was determined from the total radiation intensity incident on the CT x-ray detector. Patient size ranging from young infants (10 kg) to oversized adults (120 kg), with CNR values obtained for x-ray tube voltages ranging from 80 to 140 kV. Patients of varying sizes were modeled as an equivalent cylinder of water, and the mean section dose (D) was determined for each selected x-ray tube kV value at a constant mAs. For each patient size and lesion type, we identified an optimal kV as the x-ray tube voltage that yields a maximum value of the figure of merit (CNR2/D). Increasing the x-ray tube voltage from 80 to 140 kV reduced lesion contrast by 11% for muscle, 21% for fat, 35% for bone and 52% for iodine, and these reductions were approximately independent of patient size. Increasing the x-ray tube voltage from 80 to 140 kV increased a muscle lesion CNR relative to a uniform water background by a factor of 2.6, with similar trends observed for fat (2.3), bone (1.9) and iodine (1.4). The improvement in lesion CNR with increasing x-ray tube voltage was highest for the largest sized patients. Increasing the x-ray tube voltage from 80 to 140 kV increased the patient dose by a factor of between 5.0 and 6.2 depending on the patient size. For small sized patients (10 and 30 kg) and muscle lesions, best performance is obtained at 80 kV; however, for adults (70 kg) and oversized adults (120 kg), the best performance would be obtained at 140 kV. Imaging fat lesions was best performed at 80 kV for all patients except for oversized adults, where 140 kV offers the best imaging performance. For high Z lesions of bone and iodine, imaging performance generally degrades with increasing kV for all patient sizes, with the degree of degradation largest for the smallest patients. We conclude that 80 kV is optimal with respect to radiation dose in abdominal CT for all pediatric patients. For adults, 80 kV is the x-ray voltage of choice for high Z lesions, whereas 140 kV would generally be the voltage of choice of lesions that have an atomic number similar to that of water.
© (2004) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Walter Huda and Kent M. Ogden "Optimizing abdominal CT dose and image quality with respect to x-ray tube voltage", Proc. SPIE 5368, Medical Imaging 2004: Physics of Medical Imaging, (6 May 2004);

Back to Top