You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
12 May 2004Automatic recognition of lung lobes and fissures from multislice CT images
Computer-aided diagnosis (CAD) has been expected to help radiologists to improve the accuracy of abnormality detection and reduce the burden during CT image interpretations. In order to realize such functions, automated segmentations of the target organ regions are always required by CAD systems. This paper describes a fully automatic processing procedure, which is designed to identify inter-lobe fissures and divide lung into five lobe regions. The lung fissures are disappeared very fuzzy and indefinite in CT images, so that it is very difficult to extract fissures directly based on its CT values. We propose a method to solve this problem using the anatomy knowledge of human lung. We extract lung region firstly and then recognize the structures of lung vessels and bronchus. Based on anatomy knowledge, we classify the vessels and bronchus on a lobe-by-lobe basis and estimate the boundary of each lobe region as the initial fissure locations. Within those locations, we extract lung fissures precisely based on an edge detection method and divide lung regions into five lung lobes lastly. The performance of the proposed method was evaluated using 9 patient cases of high-resolution multi-slice chest CT images; the improvement has been confirmed with the reliable recognition results.