You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
12 May 2004Improvement in automated detection of pulmonary nodules on helical x-ray CT images
1Niigata Univ. School of Health Sciences (Japan) 2Gifu Univ. School of Medicine (Japan) 3Nagoya Univ. School of Health Sciences (Japan) 4Nagoya Univ. School of Medicine (Japan)
We previously developed a scheme to automatically detect pulmonary nodules on CT images, as a part of computer-aided diagnosis (CAD) system. The proposed method consisted of two template-matching approaches based on simple models that simulate real nodules. One was a new template-matching technique based on a genetic algorithm (GA) template matching (GATM) for detecting nodules within the lung area. The other one was a conventional template matching along the lung wall [lung wall template matching (LWTM)] for detecting nodules on the lung wall. After the two template matchings, thirteen feature values were calculated and used for eliminating false positives. Twenty clinical cases involving a total of 557 sectional images were applied; 71 nodules out of 98 were correctly detected with the number of false positives at approximately 30.8/case by applying two template matchings (GATM and LWTM) and elimination process of false positives. In this study, five features were newly added, and threshold-values of our previous features were reconsidered for further eliminating false positives. As the result, the number of false positives was decreased to 5.5/case without elimination of true positives.