An Application Service Provider (ASP) archive model for disaster recovery for Saint John’s Health Center (SJHC) clinical PACS data has been implemented using a Fault-Tolerant Archive Server at the Image Processing and Informatics Laboratory, Marina del Rey, CA (IPIL) since mid-2002. The purpose of this paper is to provide clinical experiences with the implementation of an ASP model backup archive in conjunction with handheld wireless technologies for a particular disaster recovery scenario, an earthquake, in which the local PACS archive and the hospital are destroyed and the patients are moved from one hospital to another. The three sites involved are: (1) SJHC, the simulated disaster site; (2) IPIL, the ASP backup archive site; and (3) University of California, Los Angeles Medical Center (UCLA), the relocated patient site. An ASP backup archive has been established at IPIL to receive clinical PACS images daily using a T1 line from SJHC for backup and disaster recovery storage. Procedures were established to test the network connectivity and data integrity on a regular basis. In a given disaster scenario where the local PACS archive has been destroyed and the patients need to be moved to a second hospital, a wireless handheld device such as a Personal Digital Assistant (PDA) can be utilized to route images to the second hospital site with a PACS and reviewed by radiologists. To simulate this disaster scenario, a wireless network was implemented within the clinical environment in all three sites: SJHC, IPIL, and UCLA. Upon executing the disaster scenario, the SJHC PACS archive server simulates a downtime disaster event. Using the PDA, the radiologist at UCLA can query the ASP backup archive server at IPIL for PACS images and route them directly to UCLA. Implementation experiences integrating this solution within the three clinical environments as well as the wireless performance are discussed. A clinical downtime disaster scenario was implemented and successfully tested. Radiologists were able to successfully query PACS images utilizing a wireless handheld device from the ASP backup archive at IPIL and route the PACS images directly to a second clinical site at UCLA where they and the patients are located at that time. In a disaster scenario, using a wireless device, radiologists at the disaster health care center can route PACS data from an ASP backup archive server to be reviewed in a live clinical PACS environment at a secondary site. This solution allows Radiologists to use a wireless handheld device to control the image workflow and to review PACS images during a major disaster event where patients must be moved to a secondary site.
|