You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
14 May 2004157-nm resist assessment by a full-field scanner
Fluorinated polymers are key materials for single-layer resists used in 157-nm lithography. We have evaluated the potential of fluorinated polymer-based resists from the viewpoint of critical dimension (CD) control, using a 0.90 numerical aperture (NA) 157-nm micro-stepper with an alternating phase shift mask (alt-PSM). A resolution limit of 55-nm line-and-space patterns was obtained and the bake temperature dependence of the CD was found to be less than 2 nm/°C. We further evaluated these resists using a 0.80-NA FPA-5800FS1 157-nm scanner for full-field imaging with an alt-PSM. With these resists, 60-nm line-and-space patterns were resolved, and a depth of focus (DOF) of more than 400 nm for 100- and 80-nm line-and-space patterns was confirmed. The CD variation across the wafer for a 100-nm 1:1 dense line pattern was 3.3 nm (3σ). Although there is still a need to improve line edge roughness and dry etching resistance, in terms of CD control the fluorinated polymer-based resists have demonstrated sufficient potential for mass-production of 65-nm-node semiconductor devices and beyond.