You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
14 May 2004BIORESIST: a lithographic approach for the patterning of cells in tissue engineering applications
Due to the involvement of organic solvents and strong bases in the pattern development process, conventional lithography, a technique that has been well-developed and widely used in the semiconductor industry, is not suitable for direct cell and protein patterning. In order to address this issue, we recently developed a biocompatible chemically amplified photoresist, BIORESIST, with which patterns can be generated without involving any harsh chemical treatment. Such a BIORESIST contains tert-butoxycarbonyl (t-BOC) protecting groups. In vitro cell culture study has shown that the t-BOC protected BIORESIST and its carboxyl-substituted counter-part interact very differently with cells. The former is non-cell adhesive, while the latter not only keeps cell attached, but also supports cell proliferation. This unique property prompted us to generate patterns (25 μm L/S) with this BIORESIST with no wet development involved. Rat fibroblast cells were cultured on the patterned surfaces. The results demonstrated that cells were strongly aligned along the patterns and attached exclusively to the adhesive region as opposed to a random appearance on the plain control surface after 24 hr of incubation. With this BIORESIST, the scalability aspect of conventional lithography could be well applied for cell patterning.
The alert did not successfully save. Please try again later.
Wei He, Kenneth E. Gonsalves, Craig R. Halberstadt, Yusif Umar, Jae-Hak Choi, "BIORESIST: a lithographic approach for the patterning of cells in tissue engineering applications," Proc. SPIE 5376, Advances in Resist Technology and Processing XXI, (14 May 2004); https://doi.org/10.1117/12.533367