You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
14 May 2004New materials for 193-nm trilayer imaging
This paper presents our progress in developing spin-on, thermosetting hardmasks and bottom antireflective coatings (BARCs) for 193-nm trilayer usage. Binder materials that were used in preparing the silicon-containing hardmasks include polymers with pendant alkylsilane function and various polyhedral oligomeric silsesquioxane (POSS) substances, with the hardmasks being very transparent at both 193 and 248 nm. The second generation hardmasks (POSS-containing) offer significant improvements over earlier materials in oxygen (O2) plasma etching resistance. The etching selectivity (O2 plasma) for a trilayer BARC relative to the best-case hardmask is about 31.5:1 (15-second etch), with the selectivity numbers being much higher for longer etching times. The preferred hardmask is both spin-bowl and solution compatible. The new trilayer BARCs use binders that are rich in aromatic content for halogen plasma etching resistance, but the antireflective products also feature optical parameters that allow low reflectivity into the photoresist. The BARCs are very spin-bowl compatible. At about 500-nm film thickness, selected BARCs have provided 80-95% planarity over 200-nm topography. Combining the two thermosetting products (hardmask and BARC) with a thin 193-nm photoresist in a trilayer configuration has given excellent 80-nm L/S (1:1) after exposure and wet-development. A conventional resist has provided 100-nm L/S (1:1.4).
The alert did not successfully save. Please try again later.
Jim D. Meador, Doug Holmes, Mariya I. Nagatkina, Rama Puligadda, Denise Gum, Randy Bennett, Sam X. Sun, Tomoyuki Enomoto, "New materials for 193-nm trilayer imaging," Proc. SPIE 5376, Advances in Resist Technology and Processing XXI, (14 May 2004); https://doi.org/10.1117/12.533539