You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
26 July 2004Finite element analysis of shape memory alloy springs designed for base isolation devices
In this paper, we conduct finite element analysis of a pseudoelastic SMA wire with curved shape, which is designed as a spring component in the base isolation devices. A simplified constitutive equation is implemented with the finite beam elements based on the updated Lagrangian formulation to deal with the geometric and material nonlinearities of the SMA wires. The simulated deformation shapes and the force-displacement characteristics are compared with the measured results.
The alert did not successfully save. Please try again later.
Arata Masuda, Akira Sone, Shogo Kamata, Yoshitaka Yamashita, "Finite element analysis of shape memory alloy springs designed for base isolation devices," Proc. SPIE 5383, Smart Structures and Materials 2004: Modeling, Signal Processing, and Control, (26 July 2004); https://doi.org/10.1117/12.540273