You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
27 July 2004Micro inchworm robot actuated by artificial muscle actuator based on nonprestrained dielectric elastomer
In this paper, we present a novel actuation method employing dielectric elastomer and a micro--inchworm robot actuated by the proposed method. Different from the previous approaches adopting pretensions of dielectric elastomer, the method depends solely on the deformation caused by the Maxwell stress, and thus, their critical problem such as stress relaxation as time goes on is cleared, though the amount of deformation is largely reduced. In addition, the proposed actuation method provides advantageous features of reduction in size, speed of response, ruggedness in operation. Using the actuator, a three-degree-of-freedom actuator module is developed, which can provide up-down, and two rotational degree-of-freedom motion. In the application of the proposed actuation method, a micro-robot mimicking the motion of an inchworm is developed.