You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
21 July 2004Introduction to EBSD analysis of micro- to nanoscale microstructures in metals and ceramics
Electron BackScatter Diffraction (EBSD) is a relatively new, scanning electron microscope-based technique used to characterize microstructures and textures in crystalline metal and ceramic materials. Advances in SEM technology, especially the development of field emission SEMs, as well as in EBSD detector design have allowed characterization at the sub-10 nm level. This paper gives a basic introduction to the EBSD technique with applications on materials with microstructures on the micron and sub-micron scale. Automated EBSD mapping at these and other resolution levels is used to study texture, individual grain orientation, crystallography-based phase identification, grain size, grain shape, strain state, grain boundary character, area percentages of multiple phases in bulk samples, crystallography of facets and failure initiation sites, and other materials characteristics. Sample sectioning and polishing are often necessary for mapping microstructures in bulk samples, however as-grown structures such as thin films and interconnects are suitable for mapping as is, and “point & shoot” type analyses may be used on other unprepared samples in conjunction with SEM imaging for phase identification and basic crystallographic orientation studies. For micron-scale devices and components, EBSD-equipped dual beam FIBs are used to select cross-sectional planes of analysis with high precision.
Scott D. Sitzman
"Introduction to EBSD analysis of micro- to nanoscale microstructures in metals and ceramics", Proc. SPIE 5392, Testing, Reliability, and Application of Micro- and Nano-Material Systems II, (21 July 2004); https://doi.org/10.1117/12.542082
The alert did not successfully save. Please try again later.
Scott D. Sitzman, "Introduction to EBSD analysis of micro- to nanoscale microstructures in metals and ceramics," Proc. SPIE 5392, Testing, Reliability, and Application of Micro- and Nano-Material Systems II, (21 July 2004); https://doi.org/10.1117/12.542082