You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
4 August 2004Scalable hardbody and plume optical signatures
The Fast Line-of-sight Imagery for Target and Exhaust Signatures (FLITES) is a High Performance Computing (HPC-CHSSI) and Missile Defense Agency (MDA) funded effort that provides a scalable program to compute highly resolved temporal, spatial, and spectral hardbody and plume optical signatures. Distributed processing capabilities are included to allow complex, high fidelity, solutions to be generated quickly generated. The distributed processing logic includes automated load balancing algorithms to facilitate scalability using large numbers of processors. To enhance exhaust plume optical signature capabilities, FLITES employs two different radiance transport algorithms. The first algorithm is the traditional Curtis-Godson bandmodel approach and is provided to support comparisons to historical results and high-frame rate production requirements. The second algorithm is the Quasi Bandmodel Line-by-line (QBL) approach, which uses randomly placed "cloned" spectral lines to yield highly resolved radiation spectra for increased accuracy while maintaining tractable runtimes. This capability will provide a significant advancement over the traditional SPURC/SIRRM radiance transport methodology.
The alert did not successfully save. Please try again later.
Dennis R. Crow, Fred Hawes, Matthew Braunstein, Charles F. Coker, Thomas Smith Jr., "Scalable hardbody and plume optical signatures," Proc. SPIE 5408, Technologies for Synthetic Environments: Hardware-in-the-Loop Testing IX, (4 August 2004); https://doi.org/10.1117/12.548993