You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
12 August 2004LWIR spectral measurements of volcanic sulfur dioxide plumes
This work examines the process of detecting and quantifying volcanic SO2 plumes using the Airborne Hyperspectral Infrared Imager (AHI) developed by the University of Hawaii. AHI was flown over Pu'u'O'o Vent of Kilauea Volcano in Hawaii to collect data on SO2 plumes. AHI is a LWIR pushbroom imager sensitive to the 7.5 - 11.5 μ region. Spectral analysis and mapping tools were used to identify and classify the SO2 plume in both radiance and emissive space. MODTRAN was used to model the radiance observed by the sensor as it looked to the ground through an SO2 plume. A spectral library of radiance profiles with varying ground surface temperatures and SO2 concentrations was developed, and the AHI data fitted to the varying model profiles. Reasonable values of SO2 emission were obtained.
The alert did not successfully save. Please try again later.
Aimee Gail Mares, Richard Christopher Olsen, Paul G. Lucey, "LWIR spectral measurements of volcanic sulfur dioxide plumes," Proc. SPIE 5425, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery X, (12 August 2004); https://doi.org/10.1117/12.540949