Paper
12 August 2004 Understanding radiative transfer in the midwave infrared: a precursor to full-spectrum atmospheric compensation
Author Affiliations +
Abstract
The compensation for atmospheric effects in the VNIR/SWIR has reached a mature stage of development with many algorithms available for application (ATREM, FLAASH, ACORN, etc.). Compensation of LWIR data is the focus of a number of promising algorithms. A gap in development exists in the MWIR where little or no atmospheric compensation work has been done yet an increased interest in MWIR applications is emerging. To obtain atmospheric compensation over the full spectrum (visible through LWIR), a better understanding of the radiative effects in the MWIR is needed. The MWIR is characterized by a unique combination of reduced solar irradiance and low thermal emission (for typical emitting surfaces), both providing relatively equal contributions to the daytime MWIR radiance. In the MWIR and LWIR, the compensation problem can be viewed as two interdependent processes: compensation for the effects of the atmosphere and the uncoupling of the surface temperature and emissivity. The former requires calculations of the atmospheric transmittance due to gases, aerosols, and thin clouds and the path radiance directed towards the sensor (both solar scattered and thermal emissions in the MWIR). A framework for a combined MWIR/LWIR compensation approach is presented where both scattering and absorption by atmospheric particles and gases are considered.
© (2004) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Michael K. Griffin, Hsiao-hua K. Burke, and John P. Kerekes "Understanding radiative transfer in the midwave infrared: a precursor to full-spectrum atmospheric compensation", Proc. SPIE 5425, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery X, (12 August 2004); https://doi.org/10.1117/12.543526
Lens.org Logo
CITATIONS
Cited by 7 scholarly publications and 1 patent.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Mid-IR

Absorption

Atmospheric particles

Aerosols

Sensors

Atmospheric modeling

Radiative transfer

Back to Top