You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
25 August 2004Improved hypothesis selection for multiple hypothesis tracking
1Air Force Office of Scientific Research (United States) 2Air Force Institute of Technology (United States) 3Massachusetts Institute of Technology (United States)
The need to track closely-spaced targets in clutter is essential in support of military operations. This paper presents a Multiple Hypothesis Tracking (MHT) algorithm which uses an efficient structure to represent the dependency which naturally arises between targets due to the joint observation process, and an Integral Square Error (ISE) mixture reduction algorithm for hypothesis control. The resulting algorithm, denoted MHT with ISE Reduction (MISER), is tested against performance metrics including track life, coalescence and track swap. The results demonstrate track life performance similar to that of ISE-based methods in the single-target case, and a significant improvement in track swap metric due to the preservation of correlation between targets. The result that correlation reduces the track life performance for formation targets requires further investigation, although it appears to demonstrate that the inherent coupling of dynamics noises for such problems eliminates much of the benefit of representing correlation only due to the joint observation process.
The alert did not successfully save. Please try again later.
Juan R. Vasquez, Jason L. Williams, "Improved hypothesis selection for multiple hypothesis tracking," Proc. SPIE 5428, Signal and Data Processing of Small Targets 2004, (25 August 2004); https://doi.org/10.1117/12.542065