You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
5 August 2004Toward a high-temporal-frequency grass canopy thermal IR model for background signatures
In this paper, we present our first results towards understanding high temporal frequency thermal infrared response from a dense grass canopy. The model is driven by slowly varying, time-averaged meteorological conditions and by high frequency measurements of local and within canopy profiles of relative humidity and wind speed, and compared to high frequency thermal infrared observations. Previously, we have employed three-dimensional ray tracing to compute the intercepted and scattered solar and IR radiation fluxes and for final scene rendering. For the turbulent fluxes, simple resistance models for latent and sensible heat with one-dimensional profiles of relative humidity and wind speed are used. Our modeling approach has proven successful in capturing the directional and diurnal variation in background thermal infrared signatures. We hypothesize that at these scales, where the model is typically driven by time-averaged, local meteorological conditions, the primary source of thermal variance arises from the spatial distribution of sunlit and shaded foliage elements within the canopy and the associated radiative interactions.
In recent experiments, we have begun to focus on the high temporal frequency response of plant canopies in the thermal infrared at 1 sec to 5 min intervals. At these scales, we hypothesize turbulent mixing plays a more dominant role. Our results indicate that in the high frequency domain, the vertical profile of temperature change is tightly coupled to the within canopy wind speed. In the results reported here, the canopy cools from the top down with increased wind velocities and heats from the bottom up at low wind velocities.
The alert did not successfully save. Please try again later.
Jerrell R. Ballard Jr., James A. Smith, George G. Koenig, "Toward a high-temporal-frequency grass canopy thermal IR model for background signatures," Proc. SPIE 5431, Targets and Backgrounds X: Characterization and Representation, (5 August 2004); https://doi.org/10.1117/12.541048