You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
16 August 2004Mathematical modeling and design of a novel 2-DOF micro attraction actuator for a micro optical switch
Many studies on optical switches have been performed in an attempt to develop optical information networks to speed information technology. In reality, however, mirror manipulators cannot be applied to multiple input and output systems due to both insufficient output displacements by the mirror parts inside the manipulator, and the difficulty of designing structures and mechanisms suitable for multi-dimensional manipulation. The principal reasons for insufficient displacement are the high rigidity of the elastic parts compared to the available driving forces and the pull-in effect. Therefore, in order to develop optical switches capable of multiple input and output switching, we suggest a novel 2-DOF(degree of freedom) electrostatic microactuator. The actuator is composed of one mirror with four beams laid about it in a corkscrew pattern, with four corkscrew electrodes on the substrate below and one mirror support pyramid situated under the mirror. Using electrostatic force, one or more of the beams are attracted from their outer ends toward the substrate. The mirror is then tilted by an angle proportional to the attracted length along the beam. The inclination and direction of the mirror are determined by the combined attracted length of the four beams. In this work we derive the mathematical model for the corkscrew beam microactuator for optical switches and show that this mathematical model accurately simulates the device by comparison with finite element analysis results. We use this mathematical model for design of the microactuator. Further we show that the designed optical switch microactuator is capable of rotating the mirror from +32 to -32 degrees about two axes with a maximum operating voltage of 163 volts. Finally, stress analysis of the actuator shows that the generated stress in the structure is at most 369 MPa.
The alert did not successfully save. Please try again later.
Daiki Kamiya, Saeed Bagheri, Mikio Horie, "Mathematical modeling and design of a novel 2-DOF micro attraction actuator for a micro optical switch," Proc. SPIE 5455, MEMS, MOEMS, and Micromachining, (16 August 2004); https://doi.org/10.1117/12.545993