You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
16 September 2004SOAR remote observing: tactics and early results
Travel from North America to the 4.1m SOAR telescope atop Cerro Pachon exceeds $1000, and takes >16 hours door to door (20+ hours typically). SOAR aims to exploit best seeing, requiring dynamic scheduling that is impossible to accomplish when catering to peripatetic astronomers. According to technical arguments at www.peakoil.org, we are near the peak rate of depleting world petroleum, so can expect travel costs to climb sharply. With the telecom bubble's glut of optical fiber, we can transmit data more efficiently than astronomers and "observe remotely". With data compression, less than half of the 6 Mbps bandwidth shared currently by SOAR and CTIO is enough to enable a high-fidelity observing presence for SOAR partners in North America, Brazil, and Chile. We discuss access from home by cable modem/DSL link.
The alert did not successfully save. Please try again later.
Gerald N. Cecil, J. Adam Crain, "SOAR remote observing: tactics and early results," Proc. SPIE 5493, Optimizing Scientific Return for Astronomy through Information Technologies, (16 September 2004); https://doi.org/10.1117/12.550613