You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
16 September 2004A genetic-based neuro-fuzzy approach for prediction of solar activity
This paper presents an application of the neuro-fuzzy modeling to analyze the time series of solar activity, as measured through the relative Wolf number. The neuro-fuzzy structure will be optimized based on the linear adapted genetic algorithm with controlling population size (LAGA-POP). First, the dimension of the time series characteristic attractor is obtained based on the smallest Regularity Criterion (RC) and the neuro-fuzzy modeling. Second, after describing the neuro-fuzzy structure and optimizing its parameters based on LAGA-POP, the performance of the present approach in forecasting yearly sunspot numbers is favorably compared to that of other published methods. Finally, the comparison predictions for the remaining part of the 22nd and the whole 23rd cycle of solar activity are presented.
The alert did not successfully save. Please try again later.
Abdel-Fattah A. Attia, Rabab H. Abdel-Hamid, Maha Quassim, "A genetic-based neuro-fuzzy approach for prediction of solar activity," Proc. SPIE 5497, Modeling and Systems Engineering for Astronomy, (16 September 2004); https://doi.org/10.1117/12.553201