You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
14 October 2004Charge transfer and recombination at conjugated polymer-semiconductor nanoparticle interfaces
We study the processes of charge transfer and recombination at the interface between semiconductor nanoparticles and conjugated polymers. These processes are crucial in determining the performance of photovoltaic devices based on these materials. Using femtosecond transient absorption we are able to follow the charge separation on picosecond timescales in blends of spherical CdSe nanocrystals with a poly(p-phenylenevinylene) derivative. Charge separation occurs on timescales of greater than 15 ps, indicating that it is limited by the diffusion of excitons to the nanoparticle interface. We also use time-resolved photoluminescence and quasi-steady-state photoinduced absorption measurements to study the vertical structure in films containing conjugated polymers and semiconductor tetrapods. Finally, we demonstrate that use of slow-evaporating solvents allows the formation of fibrilar structures in poly(3-hexylthiophene) films, and that this is correlated with improved performance in photovoltaic devices containing poly(3-hexylthiophene) and CdSe nanorods.
The alert did not successfully save. Please try again later.
Baoquan Sun, Sebastian Westenhoff, Anoop S. Dhoot, Carlos Silva, Neil C Greenham, "Charge transfer and recombination at conjugated polymer-semiconductor nanoparticle interfaces," Proc. SPIE 5513, Physical Chemistry of Interfaces and Nanomaterials III, (14 October 2004); https://doi.org/10.1117/12.559441