You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
14 October 2004Single molecule studies of surface-induced secondary structure in a model peptide
We have proposed using single molecule fluorescence resonant energy transfer (SM-FRET) to investigate the induction of secondary structure in model, surface-active peptides upon binding at an interface. The ability for SM-FRET to distinguish structural heterogeneity will offer a distinct advantage over traditional biophysical methods in these types of studies. Ensemble methods mask heterogeneity and only provide an average measure of secondary structural features. Because secondary structure contributes greatly to the energetics of dehydrating the amide backbone, detailed information of conformational distributions is crucial to the understanding of the thermodynamic cycle involved. Here we present results from our first efforts at using SM-FRET to study an amphipathic α-helix forming peptide immobilized at the solid-liquid interface between an aqueous solution and an octadecylsilane modified glass surface. This system serves as a model for future studies of peptide partitioning to lipid bilayers and other relevant interfaces.
The alert did not successfully save. Please try again later.
Douglas S. English, Joy Ann Cunningham, Sarah C. Wehri, Amy F. Petrik, Kenji Okamoto, "Single molecule studies of surface-induced secondary structure in a model peptide," Proc. SPIE 5513, Physical Chemistry of Interfaces and Nanomaterials III, (14 October 2004); https://doi.org/10.1117/12.557035