You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
15 October 2004Electro-tunable liquid crystal waveguide laser
Electrically tunable laser action has been demonstrated in a dye-doped nematic liquid crystal (NLC) waveguide by holographic excitation. The optical feedback were provided by a transient grating induced by two-beam interference using Lloyd mirror configuration, and the distributed feedback (DFB) laser action was observed. Electrical tuning of lasing wavelength was realized due to the change of the effective refractive index of the NLC core layer caused by the reorientation of NLC molecules. The total shift of lasing wavelength was about 30 nm, which could be realized with less than about 1.4 V of applied voltage. Based on a waveguiding mode theory, numerical analysis of TM-guided mode in the presence of applied electric field was performed, and field-induced tuning of the lasing wavelength was investigated in detail. Prospects for the realization of a single-mode operation and tuning of the lasing wavelength was also shown. Based on the numerical results, single-mode operation of lasing was experimentally realized utilizing NLC with low refractive indices.