You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
3 November 2004Wide-bandgap organic photovoltaics on flexible plastic substrates using conducting polymer electrodes
Single heterojunction and multi-heterojunction, small-molecule organic photovoltaic devices (OPVs) have been prepared on Glass/ITO and fully-flexible thermoplastic substrates using pre-patterned, conducting polymer electrodes (~ 450Ω/□). OPVs were fabricated via sequential vacuum vapor deposition of layers of the organic
electron donating/hole transporting material: N,N'-(a-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine (a-NPD) and the electron accepting/transporting material C60. Devices built on glass/ITO substrates operated with a maximum, white-light power conversion efficiency (ηpower) of 1.1% (AM1.5, 97 mW/cm2). Analogous devices fabricated on fully-flexible, plastic substrates using conducting polymer transparent electrodes exhibited white-light power conversion efficiencies of ~1%, virtually identical to those fabricated on prepatterned ITO/glass
substrates. The glass/ITO cells were further optimized by including an exciton blocking layer of 2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) and their ηpowerS exhibited a 30% increase to 1.3%.
The alert did not successfully save. Please try again later.
Gary P. Kushto, Woohong Kim, Zakya H. Kafafi, "Wide-bandgap organic photovoltaics on flexible plastic substrates using conducting polymer electrodes," Proc. SPIE 5520, Organic Photovoltaics V, (3 November 2004); https://doi.org/10.1117/12.565017