You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
30 September 2004Feasibility study of using elastic memory composites for the deployment of precision optical space instruments
The use of an elastic memory composite member (EMC) as the active element in deployable optical instruments has tremendous potential. Elastic memory composite mechanisms can remove the need for mechanical latches and remove the post deployed microdynamic instabilities associated with them while providing a low shock, controlled deployment. Additionally, elastic memory composite mechanisms are lightweight, simple, and have a very low coefficient of thermal expansion, which are also desirable properties for deployable optical systems. This paper describes an effort that has been done to explore this possibility. A mechanical latching actuator in an existing precision deployable optical testbed was replaced by an EMC self-locking actuator. Feasibility was assessed through a detailed design and fabrication exercise followed by experimental evaluation of a prototype actuator system in the ground-based deployable optics testbed.
The alert did not successfully save. Please try again later.
Will Francis, Mark S. Lake, Jason D. Hinkle, Lee D. Peterson, "Feasibility study of using elastic memory composites for the deployment of precision optical space instruments," Proc. SPIE 5528, Space Systems Engineering and Optical Alignment Mechanisms, (30 September 2004); https://doi.org/10.1117/12.563149