You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
22 October 2004Nonuniform quantization compression techniques for digital holograms of three-dimensional objects
Digital holography is a successful technique for recording and reconstructing three-dimensional (3D) objects. The recent development of megapixel digital sensors with high spatial resolution and high dynamic range has benefited this area. We capture digital holograms (whole Fresnel fields) using phase-shift interferometry and compress then to enhance transmission and storage effciency. Lossy quantization techniques are applied to our complex-valued holograms as the initial stage in the compression procedure. Quantization reduces the number of different real and imaginary values required to describe each hologram. We outline the nonuniform quantization techniques that we have had some success with thus far, and present our latest results with two techniques based on companding and histogram approaches. Companding quantization attempts to combine the effciency of uniform quantization with the improved performance of nonuniform quantization. Our results show that companding techniques can be comparable with k-means and neural network clustering algorithms, while only requiring a single-pass processing step. In addition, we report on a novel lossy compression technique that utilizes histogram data to quantize digital holograms. Here, we use the results of a histogram analysis to inform our decision about the best choice for quantization values.
The alert did not successfully save. Please try again later.
Alison E. Shortt, Thomas J. Naughton, Bahram Javidi, "Nonuniform quantization compression techniques for digital holograms of three-dimensional objects," Proc. SPIE 5557, Optical Information Systems II, (22 October 2004); https://doi.org/10.1117/12.556694