You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
30 November 2004Cloud properties retrieval using neural networks
In this work a method for determining the micro- and macro-physical properties of oceanic stratocumulus clouds at night-time (when only infrared data are available) is presented. It is based on the inversion of a radiative transfer model that computes the brightness temperatures in NOAA-AVHRR channels 3, 4 and 5. The inversion is performed using an artificial neural network (ANN), which is trained to fit the theoretical computations. A detailed study of the ANN parameters and training algorithms demonstrates the convenience of using the "back propagation with momentum" method. The proposed retrieval, using both uniform and adiabatic models for clouds, was validated using ground data collected in Tenerife (Canary Islands), and a good agreement was obtained in those pixels near the sample site. The convenience of using the adiabatic approximation is discussed.
The alert did not successfully save. Please try again later.
Abidan Cerdena, Juan Carlos Perez, Albano Gonzalez, "Cloud properties retrieval using neural networks," Proc. SPIE 5571, Remote Sensing of Clouds and the Atmosphere IX, (30 November 2004); https://doi.org/10.1117/12.565228