You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
11 November 2004Aerosol extinction in coastal zones
The performance of electro-optical systems can be substantially affected by aerosol particles that scatter and absorb electromagnetic radiation. A few years ago, an empirical model was developed describing the aerosol size distributions in the Mediterranean coastal atmosphere near Toulon (France). This model has been coupled with Mie theory to yield the code MEDEX (MEDiterranean EXtinction) for the aerosol extinction. This contribution deals with the evaluation of MEDEX for aerosol data recorded near the Black Sea coast. For this site, MEDEX correctly predicts the aerosol extinction as function of wavelength, albeit with minor discrepancies below one micron. These differences are attributed to the uncertainty in predicting the concentrations of submicron particles. The comparison shows that MEDEX may be more generally applicable than to the Toulon area.
The alert did not successfully save. Please try again later.
Jacques J. Piazzola D.D.S., Gennady Kaloshin, Gerrit De Leeuw, Alexander M. J. van Eijk, "Aerosol extinction in coastal zones," Proc. SPIE 5572, Optics in Atmospheric Propagation and Adaptive Systems VII, (11 November 2004); https://doi.org/10.1117/12.563299