You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
10 November 2004A neural adaptive model for hyperspectral data classification under minimal training conditions
Hyperspectral imaging is becoming an important analytical tool for generating land-use map. High dimensionality in hyperspectral remote sensing data, on one hand, provides us with more potential discrimination power for classification tasks. On the other hand, the classification performance improves up to a limited point as additional features are added, and then deteriorates due to the limited number of training samples. Proceeding from these considerations, the present work is aimed to systematically evaluate the robustness of novel classification techniques in classifying hyperspectral data under the twofold condition of high dimensionality and minimal training. We consider in the study a neural adaptive model based on Multi Layer Perceptron (MLP). Accuracy has been evaluated experimentally, classifying MIVIS Hyperspectral data to identify different typology of vegetation in Ticino Regional Park. A performance analysis has been conducted comparing the novel approach with Support Vector Machine and conventional statistical and neural techniques. The adaptive model shows advantages especially when mixed data are presented to the classifiers in combination with minimal training conditions.
The alert did not successfully save. Please try again later.
Elisabetta Binaghi, Ignazio Gallo, Mirco Boschetti, Pietro Alessandro Brivio, "A neural adaptive model for hyperspectral data classification under minimal training conditions," Proc. SPIE 5573, Image and Signal Processing for Remote Sensing X, (10 November 2004); https://doi.org/10.1117/12.567950