You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
14 December 2004Development and testing of a hyperspectral imaging instrument for standoff chemical detection
Standoff detection, identification and quantification of chemicals require sensitive spectrometers with calibration capabilities. Recent developments in LWIR focal plane arrays combined with the mastering of Fourier-Transform Spectrometer technology allow the realization of an imaging spectrometer specifically designed for chemical imaging. The spectral and radiometric calibration of the instrument enables the processing of the data to detect the chemicals with spectral signatures in the 8-12 μm region. Spectral images are processed and the contrast between different pixels is used to map the chemicals.
Telops has built a field-portable instrument. This paper presents some details about the design of this state-of-the-art sensor. Performance and test results are also presented along with results from a field test.
The alert did not successfully save. Please try again later.
Martin Chamberland, Vincent Farley, Jean Giroux, Andre Villemaire, Jean-Francois Legault, Karl R. Schwantes, "Development and testing of a hyperspectral imaging instrument for standoff chemical detection," Proc. SPIE 5584, Chemical and Biological Standoff Detection II, (14 December 2004); https://doi.org/10.1117/12.579522