You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
14 December 2004Enhancement of numerical computations of the Wigner-Poisson equations for application to the simulation of THz-frequency RTD oscillators
Resonant tunneling diodes (RTDs) are ultra-small semiconductor devices that have potential as very high frequency oscillators. To describe the electron transport within these devices, the Wigner-Poisson Equations are used. These equations incorporate quantum mechanics to describe how the electron distribution changes in time due to kinetic energy, potential energy, and scattering effects. To study the RTD, we apply numerical continuation methods to calculate the steady-state electron distribution as the voltage difference across the RTD varies. To implement the continuation methods, the RTD simulator is interfaced to LOCA (Library of Continuation Algorithm), a software library that is a part of Sandia National Laboratories' parallel solver package, Trilinos. With more sophisticated numerical solvers, we are able to calculate solutions on finer grids that were previously too computationally intensive. This is very important to allow for detailed studies of correlation effects which may dramatically influence oscillatory behavior in RTD-based devices. The more accurate results derived from this work reveal new physical effects that were absent in prior studies. Hence, these physics-based and more refined numerical simulations will provide new insights and greatly facilitate the future optimization of RTD-based oscillator sources and thus has important relevance to THz-frequency-regime based spectroscopic sensing technology.
The alert did not successfully save. Please try again later.
Matthew S. Lasater, Carl Tim Kelley, Andrew G. Salinger, Dwight L. Woolard, Peiji Zhao, "Enhancement of numerical computations of the Wigner-Poisson equations for application to the simulation of THz-frequency RTD oscillators," Proc. SPIE 5584, Chemical and Biological Standoff Detection II, (14 December 2004); https://doi.org/10.1117/12.580669