You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
29 December 2004Low-dimensional [110]-orientated lead chalcogenides for mid-infrared lasers
Low dimensional lead salt structure such as quantum-well (QW) structure is proposed for the fabrication of opto-electronic devices. Among [100], [111], and [110] orientations, [110]-orientated QW structure offers the highest gain. Theoretical simulations of [110] QW Pb-salt edge-emitting lasers show a 70-degree temperature increase in continuous-wave (CW) operation compared to the conventional [100]-orientated lasers. With modestly reduced Auger recombination of low dimensional material and with improved heat dissipation for laser structure, CW operation with about 10 mW output powers at room temperature for PbSe QW laser is predicted. PbSe epitaxial layer and PbSe/PbSrSe QW structures were, for the first time, successfully grown on [110]-orientated BaF2 substrate by molecular-beam-epitaxy (MBE). The linewidth of the rocking curve from high-resolution x-ray diffraction (HRXRD) measurement for PbSe thin film is 60 arcsec, which indicates high crystalline quality. The dislocation density estimated by the rocking curve is 1.18x107 cm-2. Photoluminescence intensity of [110]-orientated samples was twice as high as that on [111]-orientated BaF2 substrates from the same MBE run.