You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
30 December 2004Classification based on texture feature of wavelet transform
The paper researches texture extraction using wavelet transform. After introducing the wavelet transform and the texture analysis methods, the image is decomposed by wavelet transform, and the sub-images are gained. Secondly, the paper takes entropy and mean as texture parameter, so the texture image is an entropy or mean image. Finally, the image is classified by the spectral and texture information. The size of the texture calculating window and the treatment to the sub-image are researched in this paper. On condition that the spectral classification adding with texture feature, the precision will improve 4% averagely. Wavelet transform can decomposed image at several levels, so it can provide many information to classify and extract, which is helpful to those applications. Because of the texture window, texture image has fuzzy edge, it will lead to error for the image that have fine object or the area with different objects interleaved.
The alert did not successfully save. Please try again later.
Jianping Pan, Jianya Gong, Jun Lu, Huanzhuo Ye, Xiaoling Chen, Jielong Yang, "Classification based on texture feature of wavelet transform," Proc. SPIE 5660, Instruments, Science, and Methods for Geospace and Planetary Remote Sensing, (30 December 2004); https://doi.org/10.1117/12.569703