You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
23 February 2005Spectral clustering for data categorization based on self-organizing maps
The exploration and categorization of large and unannotated image collections is a challenging task in the field of image retrieval as well as in the generation of appearance based object representations. In this context the Self-Organizing Map (SOM) has shown to be an efficient and scalable tool for the analysis of image collections based on low level features. Next to commonly employed visualization methods, clustering techniques have been recently considered for the aggregation of SOM nodes into groups in order to facilitate category specific data exploration. In this paper, spectral clustering based on graph theoretic concepts is employed for SOM based data categorization. The results are compared with those from the Neural Gas algorithm and hierarchical agglomerative clustering. Using SOMs trained on an eigenspace representation of the Columbia Object Image Library 20 (COIL20), the correspondence of the cluster data to a semantic reference grouping is calculated. Based on the Adjusted Rand Index it is shown that independent from the number of selected clusters, spectral clustering achieves a significantly higher correspondence to the reference grouping than any of the other methods.
The alert did not successfully save. Please try again later.
Axel Saalbach, Thorsten Twellmann, Tim W. Nattkemper, "Spectral clustering for data categorization based on self-organizing maps," Proc. SPIE 5673, Applications of Neural Networks and Machine Learning in Image Processing IX, (23 February 2005); https://doi.org/10.1117/12.585857