You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
14 March 2005Integrated lossy, near-lossless, and lossless compression of medical volumetric data
We propose an integrated, wavelet based, two-stage coding scheme for lossy, near-lossless and lossless compression of medical volumetric data. The method presented determines the bit-rate while encoding for the lossy layer and without any iteration. It is in the spirit of "lossy plus residual coding" and consists of a wavelet-based lossy layer followed by an arithmetic coding of the quantized residual to guarantee a given pixel-wise maximum error bound. We focus on the selection of the optimum bit rate for the lossy coder to achieve the minimum total (lossy plus residual) bit rate in the near-lossless and the lossless cases. We propose a simple and practical method to estimate online the optimal bit rate and provide a theoretical justification for it. Experimental results show that the proposed scheme provides improved, embedded lossy, and lossless performance competitive with the best results published so far in the literature, with an added feature of near-lossless coding.
The alert did not successfully save. Please try again later.
Sehoon Yea, Sungdae Cho, William A. Pearlman, "Integrated lossy, near-lossless, and lossless compression of medical volumetric data," Proc. SPIE 5685, Image and Video Communications and Processing 2005, (14 March 2005); https://doi.org/10.1117/12.585931