Paper
29 March 2005 Cholesterol dependence of cell membrane dynamics
Author Affiliations +
Abstract
Membranes of living cells are characterized by laser-assisted fluorescence microscopy, in particular a combination of microspectrofluorometry, total internal reflection fluorescence microscopy (TIRFM) and fluorescence decay kinetics. The generalized polarization (GP, characterizing a spectral shift which depends on the phase of membrane lipids), the time constant of fluorescence anisotropy (τr) as well as the fluorescence lifetime (τ) of the membrane marker laurdan revealed to be appropriate measures for membrane stiffness and fluidity. GP decreased with increasing temperature and was always higher for the plasma membrane than for intracellular membranes. The latter effect was correlated with the intracellular content of cholesterol, which could be modified using defined protocols of depletion or enrichment. Concomitant with generalized polarization the fluorescence lifetime τ increased with the content of cholesterol. Changes of cholesterol amounts in cell membranes have previously been related to specific diseases and may have some influence on the uptake of pharmaceutical agents.
© (2005) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Petra Weber, Michael Wagner, Reinhard Sailer, Wolfgang S.L. Strauss, and Herbert Schneckenburger "Cholesterol dependence of cell membrane dynamics", Proc. SPIE 5699, Imaging, Manipulation, and Analysis of Biomolecules and Cells: Fundamentals and Applications III, (29 March 2005); https://doi.org/10.1117/12.590236
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Luminescence

Plasma

Polarization

Microscopy

Temperature metrology

Diffusion

Fluorescence anisotropy

Back to Top