You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
27 April 2005Recent advances in non-linear frequency conversion of high-power, single-mode diode lasers
Frequency conversion of near-infrared diode lasers provides an efficient method to generate tunable laser radiation in the near-UV, violet and blue-green spectral range. High-power, coherent fundamental laser sources such as master oscillator-power amplifier (MOPA) configurations are now state of the art and commercially available.
A new, highly efficient material for second-harmonic generation (SHG) is Bismuth Triborate ("BiBO", stoichiometry BiB3O6). The material has a high effective non-linearity deff, is non-hygroscopic and transparent for wavelengths between 286 nm and 2.5 μm. Compared to other non-linear crystals, "walk-off" effects between fundamental laser radiation and frequency-doubled beam are considerably lower. We used a BiBO crystal in a resonant doubling cavity to convert the output of a 780 nm, 900 mW tapered amplifier system. A maximum UV power of 400 mW (conversion efficiency 44%) was attained. This value is 3-4 times higher than previous results obtained with LBO or BBO crystals and, to the best of our knowledge, represents the highest tunable cw power of a frequency-converted diode laser.
The alert did not successfully save. Please try again later.
Thorsten Schmitt, Anselm Deninger, Frank Lison, Wilhelm Kaenders, "Recent advances in non-linear frequency conversion of high-power, single-mode diode lasers," Proc. SPIE 5707, Solid State Lasers XIV: Technology and Devices, (27 April 2005); https://doi.org/10.1117/12.590465