You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
22 January 2005Interconnected multilevel microfluidic channels fabricated using low-temperature bonding of SU-8 and multilayer lithography
This paper describes a novel fabrication method for the manufacture of multi-level microfluidic structures using SU-8. The fabrication method is based on wafer bonding of SU-8 layers and multilayer lithography in SU-8 to form microchannels and other structures at different levels. In our method, non-UV-exposed SU-8 layers are transferred to SU-8 structured wafers at desirably low temperatures. This technique is particularly useful for building multi-level fluidic structures, because non-UV-exposed SU-8 can be used as cover for microchannels and the cover can then be lithographically structured, i.e., to form interconnects, after which subsequent transferring of non-UV-exposed SU-8 onto the wafer allows for the fabrication of interconnected multi-level channels and other structures. Examples of interconnected multi-level microchannels were realized using this newly developed method. Liquid has been introduced into the microchannels at different levels to reveal the desirable functionality of the interconnected multi-level channels. The method described here is easily implementable using standard photolithography and requires no expensive bonding equipment. More importantly, the fabrication procedure is CMOS compatible, offering the potential to integrate electronic devices and MEMS sensors into microfluidic systems.
The alert did not successfully save. Please try again later.
Zheng-Chun Peng, Zhong-Geng Ling, Jost Goettert, Josef Hormes, Kun Lian, "Interconnected multilevel microfluidic channels fabricated using low-temperature bonding of SU-8 and multilayer lithography," Proc. SPIE 5718, Microfluidics, BioMEMS, and Medical Microsystems III, (22 January 2005); https://doi.org/10.1117/12.592244