You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
4 April 2005Rib-type polyimides and polyimide-silica hybrid arrayed waveguide grating simulation and fabrication
Polyimides and polyimide-silica hybrid AWG device with 2.2% and 1.6% refractive index difference (□), and the transmission spectrum of AWG's device indicated the insertion loss were -3.12 dB and -3.16 dB, crosstalk were -20 dB and -15 dB, and side-lobe were both lower than -60 dB, respectively, by 2D beam propagation method were investigated in this study. The smallest chip size of the whole device is smaller than 3.4 cm x 1.8 cm, and the highest coupling loss of the rib waveguide for single mode fiber was about -1.02 dB. Based on the 3D simulation results, the devices will be really fabricated by thin-film deposition, photolithography and dry-etching processes.
Optical measurements of polyimides and polyimide-silica hybrid materials formed on quartz glass indicated, the refractive indexes of top cladding/core/bottom cladding layers at 1550 nm wavelength were 1.522/1.546/1.522 and 1.4907/1.53/1.4907, respectively. The extinction coefficients of all samples indicated approximately zero at 1550 nm wavelength. We will adopt these polyimides and polyimide-silica hybrid materials to perform real AWG fabrication. From atomic force microscopy (AFM) analysis of polyimides and polyimide-silica hybrid materials revealed, the surface average roughness was 0.236 nm and 0.364 nm, respectively. The structures of polyimides and polyimide-silica hybrid materials were identified by fourier transform infar ray (FTIR). High-resolution transmission electron microscopy (HRTEM/EDAX) was used to study the localized interface structure and compositional distribution. The morphology of rib structure waveguides, polyimides and polyimide-silica hybrid films were examined by scanning electron microscopy (SEM).