You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
7 March 2005Light-emitting diode of fully conjugated heterocyclic aromatic rigid-rod polymer doped with multi-wall carbon nanotube
Poly-p-phenylenebenzobisoxazole (PBO) and carbon nanotube (CNT) contain fully conjugated rodlike backbone entailing excellent mechanical properties, thermo-oxidative and solvent resistance. Rigid-rod PBO is commonly processed by dissolved in methanesulfonic acid or Lewis acid. A CNT of multi-wall carbon nanotube (MWNT) was dissolved in a Lewis acid solution of PBO for dispersion of nanotube, and then spun for thin film. MWNT
concentration in the films was from zero up to 5 wt.%. Compared to that of pure PBO film, all PBO/MWNT composite films retained same but enhanced UV-Vis absorption peaks showing that MWNT and PBO do not have overlapping electron orbitals affecting their energy gaps. The composite films were excited at 325 nm using a He-Cd
laser for photoluminescence (PL) response. All PL spectra had maximum wavelength peak at 540 nm indicative of yellow-green light emission. In the case of light emitting diodes, MWNT doped PBO would decrease threshold voltage for about 2 V and increase device emission current up two orders of magnitude than those without MWNT. This required a larger bias voltage leading to a shorter device lifetime.