You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
10 April 2005Blue organic light-emitting device with low driving voltage and high current efficiency
In this paper, we report a high efficiency organic light-emitting device (OLED) with a high electron mobility electron transport layer (ETL) material and high efficiency blue dopant material. Typically, the mobility of a hole transport layer (HTL) material is much higher than that of an electron transport layer (ETL) material. Here we used the bis(10-hydroxyben-zo[h]quinolinato)beryllium (Bebq2) as the ETL material that exhibits superior electron mobility. It effectively reduced the driving voltage and increased the power efficiency. The blue dopant material was 4,4'-bis[2-(4-
(N,N-diphenylamino)phenyl)vinyl]biphenyl (DPAVBi) in the 9,10-bis(2’-naphthyl) anthracene (BNA), that was the host material of the emitting layer (EML). At 100 cd/m2, the current efficiencies with different dopant concentration can be as high as 19.2 cd/A with the CIE coordinate at (0.154, 0.238). Driving voltage at 20mA/cm2 was 4.94 V of this device. With increasing the doping concentration, the drive voltage variation did not vary much and was within 0.6 V at 20 mA/cm2. The emitting mechanism in such a device may be mainly due to energy transfer rather than carrier trapping. CIE coordinate of such a device shifted toward blue with increasing current density due to intense light emission from the host material of the EML. The highest efficiency was achieved when doping concentration is 3%.
The alert did not successfully save. Please try again later.
Jiun-Haw Lee, Tien-Chun Lin, Chi-Chih Liao, "Blue organic light-emitting device with low driving voltage and high current efficiency," Proc. SPIE 5740, Projection Displays XI, (10 April 2005); https://doi.org/10.1117/12.590009