You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
20 April 2005Investigation of externally activated x-ray fluorescence tomography for use in medical diagnostics
In the present study the applicability of x-ray fluorescence tomography for in-vivo medical imaging was investigated with respect to signal strength, background distribution and minimum detectable concentration. Tomographic imaging of the concentration distribution of suitable marker substances by the detection of the x-ray fluorescence emitted upon external excitation with x-rays has been demonstrated by other groups. However, most of these studies work with parameters that are not realistic for the medical in-vivo imaging of marker substances based on this principle; e.g. they use very small phantoms or gaseous markers. The investigated scenario uses the irradiation during a transmission computed tomography (CT) scan for the external activation of a suitable type and concentration of an x-ray fluorescence marker administered to the patient. During the irradiation, collimated and energy-resolving detectors acquire fluorescence radiation signals emitted along lines through the patient. By tomographic reconstruction of the fluorescence signal data-set, a concentration map of the marker is generated. This fluorescence image will be inherently co-registered with the high-resolution transmission CT image and can show functional or metabolic processes as an additional channel of information. The present study is based both on phantom experiments in a dedicated measurement set-up and on simulations, using various marker substances and detection concepts. Special focus was given to background reduction strategies. Moreover, the background signal in the spectral detection windows that limits the concentration resolution of the method was quantified. Signal-to-background ratios and minimum detectable marker concentrations for different scanner concepts will be presented.
The alert did not successfully save. Please try again later.
H. von Busch, G. Harding, G. Martens, J.-P. Schlomka, B. Schweizer, "Investigation of externally activated x-ray fluorescence tomography for use in medical diagnostics," Proc. SPIE 5745, Medical Imaging 2005: Physics of Medical Imaging, (20 April 2005); https://doi.org/10.1117/12.591663