You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
20 April 2005The importance of modeling normal mammographic structure in optimizing flat-panel CT breast imaging systems
In recent years, there has been interest in exploring the feasibility of CT breast imaging using flat-panel digital detectors in a truncated cone-beam geometry. Preliminary results are promising and it appears as if 3D tomographic imaging of the breast has great potential for reducing the masking effect of superimposed parenchymal structure typically observed with conventional mammography. In this study, a mathematical framework used for determining optimal design and acquisition parameters for such a CT breast imaging system is described. The ideal observer SNR is used as a figure-of-merit, under the assumptions that the imaging system is linear and shift-invariant. Computation of the ideal observer SNR used a parallel-cascade model to predict signal and noise propagation through the detector, as well as a realistic model of the lesion detection task in breast imaging. For all optimizations discussed here, the total mean glandular dose for a CT breast imaging study is constrained to be approximately equivalent to that of a two-view conventional mammography study. The framework presented is used to explore the affect of the specific task on the optimal exposure technique of flat-panel CT breast imaging. In particular, it is observed that modeling the normal mammographic structure in the projection images can sometimes impact the optimal kVp settings.
The alert did not successfully save. Please try again later.
Stephen J. Glick, Samta Thacker, Xing Gong, "The importance of modeling normal mammographic structure in optimizing flat-panel CT breast imaging systems," Proc. SPIE 5745, Medical Imaging 2005: Physics of Medical Imaging, (20 April 2005); https://doi.org/10.1117/12.595538