Paper
14 April 2005 Methods of in-vivo mouse lung micro-CT
Wolfgang A. Recheis, Earl Nixon, Jacqueline Thiesse, Geoffrey McLennan, Alan Ross, Eric Hoffman
Author Affiliations +
Abstract
Micro-CT will have a profound influence on the accumulation of anatomical and physiological phenotypic changes in natural and transgenetic mouse models. Longitudinal studies will be greatly facilitated, allowing for a more complete and accurate description of events if in-vivo studies are accomplished. The purpose of the ongoing project is to establish a feasible and reproducible setup for in-vivo mouse lung micro-computed tomography (μCT). We seek to use in-vivo respiratory-gated μCT to follow mouse models of lung disease with subsequent recovery of the mouse. Methodologies for optimizing scanning parameters and gating for the in-vivo mouse lung are presented. A Scireq flexiVent ventilated the gas-anesthetized mice at 60 breaths/minute, 30 cm H20 PEEP, 30 ml/kg tidal volume and provided a respiratory signal to gate a Skyscan 1076 μCT. Physiologic monitoring allowed the control of vital functions and quality of anesthesia, e.g. via ECG monitoring. In contrary to longer exposure times with ex-vivo scans, scan times for in-vivo were reduced using 35μm pixel size, 158ms exposure time and 18μm pixel size, 316ms exposure time to reduce motion artifacts. Gating via spontaneous breathing was also tested. Optimal contrast resolution was achieved at 50kVp, 200μA, applying an aluminum filter (0.5mm). There were minimal non-cardiac related motion artifacts. Both 35μm and 1μm voxel size images were suitable for evaluation of the airway lumen and parenchymal density. Total scan times were 30 and 65 minutes respectively. The mice recovered following scanning protocols. In-vivo lung scanning with recovery of the mouse delivered reasonable image quality for longitudinal studies, e.g. mouse asthma models. After examining 10 mice, we conclude μCT is a feasible tool evaluating mouse models of lung pathology in longitudinal studies with increasing anatomic detail available for evaluation as one moves from in-vivo to ex-vivo studies. Further developments include automated bronchial tree segmentation and airway wall thickness measurement tools. Improvements in Hounsfield unit calibration have to be performed when the interest of the study lies in determining and quantifying parenchymal changes and rely on estimating partial volume contributions of underlying structures to voxel densities.
© (2005) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Wolfgang A. Recheis, Earl Nixon, Jacqueline Thiesse, Geoffrey McLennan, Alan Ross, and Eric Hoffman "Methods of in-vivo mouse lung micro-CT", Proc. SPIE 5746, Medical Imaging 2005: Physiology, Function, and Structure from Medical Images, (14 April 2005); https://doi.org/10.1117/12.598464
Lens.org Logo
CITATIONS
Cited by 2 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Lung

In vivo imaging

Calibration

Scanners

Mouse models

Pixel resolution

Sensors

RELATED CONTENT


Back to Top