You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
29 April 2005Automated detection of mammographic masses: preliminary assessment of an information-theoretic CAD scheme for reduction of false positives
The purpose of this work was to evaluate an information-theoretic computer-aided detection (CAD) scheme for improving the specificity of mass detection in screening mammograms. The study was based on images from the Lumisys set of the Digital Database for Screening Mammography (DDSM). Initially, the craniocaudal views of 49 DDSM mammograms were analyzed using an automated detection algorithm developed to prescreen mammograms. The prescreening algorithm followed a morphological concentric layer analysis and resulted in 319 false positive detections at 92% sensitivity. These 319 suspicious yet normal regions were extracted for further analysis with our information-theoretic CAD scheme. Our scheme follows a knowledge-based decision strategy. The strategy relies on information theoretic principles for similarity assessment between a query case and a knowledge databank of cases with known ground truth. Receiver Operating Characteristic (ROC) analysis was performed to determine how well the CAD scheme can discriminate the false positive regions from 681 true masses. The overall ROC area index of the information-theoretic CAD system was 0.75±0.02. At 97%, 95%, and 90% sensitivity, the system eliminated safely 20%, 30%, and 42% of the previously identified false positives respectively. Thus, information-theoretic CAD analysis can yield a significant reduction in false-positive detections while maintaining reasonable sensitivity.
The alert did not successfully save. Please try again later.
Georgia D. Tourassi, Nevine H. Eltonsy, Adel S. Elmaghraby, Carey E. Floyd Jr., "Automated detection of mammographic masses: preliminary assessment of an information-theoretic CAD scheme for reduction of false positives," Proc. SPIE 5747, Medical Imaging 2005: Image Processing, (29 April 2005); https://doi.org/10.1117/12.595696