You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
29 April 2005Evidence based detection of spiculated masses and architectural distortions
Mass detection algorithms generally consist of two stages. The aim of the first stage is to detect all potential masses. In the second stage, the aim is to reduce the false-positives by classifying the detected objects as masses or normal tissue. In this paper, we present a new evidence based, stage-one algorithm for the detection of spiculated masses and architectural distortions. By evidence based, we mean that we use the statistics of the physical characteristics of these abnormalities to determine the parameters of the detection algorithm. Our stage-one algorithm consists of two steps, an enhancement step followed by a filtering step. In the first step, we propose a new technique for the enhancement of spiculations in which a linear filter is applied to the Radon transform of the image. In the second step, we filter the enhanced images with a new class of linear image filters called Radial Spiculation Filters. We have invented these filters specifically for detecting spiculated masses and architectural distortions that are marked by converging lines or spiculations. These filters are highly specific narrowband filters, which are designed to match the expected structures of these abnormalities and form a new class of wavelet-type filterbanks derived from optimal theories of filtering. A key aspect of this work is that each parameter of the filter has been incorporated to capture the variation in physical characteristics of spiculated masses and architectural distortions and that the parameters of the stage-one detection algorithm are determined by the physical measurements.
The alert did not successfully save. Please try again later.
Mehul P. Sampat, Gary J. Whitman, Mia K. Markey, Alan Conrad Bovik, "Evidence based detection of spiculated masses and architectural distortions," Proc. SPIE 5747, Medical Imaging 2005: Image Processing, (29 April 2005); https://doi.org/10.1117/12.595331